Stochastic Gradient MCMC with Stale Gradients
نویسندگان
چکیده
Stochastic gradient MCMC (SG-MCMC) has played an important role in largescale Bayesian learning, with well-developed theoretical convergence properties. In such applications of SG-MCMC, it is becoming increasingly popular to employ distributed systems, where stochastic gradients are computed based on some outdated parameters, yielding what are termed stale gradients. While stale gradients could be directly used in SG-MCMC, their impact on convergence properties has not been well studied. In this paper we develop theory to show that while the bias and MSE of an SG-MCMC algorithm depend on the staleness of stochastic gradients, its estimation variance (relative to the expected estimate, based on a prescribed number of samples) is independent of it. In a simple Bayesian distributed system with SG-MCMC, where stale gradients are computed asynchronously by a set of workers, our theory indicates a linear speedup on the decrease of estimation variance w.r.t. the number of workers. Experiments on synthetic data and deep neural networks validate our theory, demonstrating the effectiveness and scalability of SG-MCMC with stale gradients.
منابع مشابه
Asynchronous Stochastic Gradient MCMC with Elastic Coupling
We consider parallel asynchronous Markov Chain Monte Carlo (MCMC) sampling for problems where we can leverage (stochastic) gradients to define continuous dynamics which explore the target distribution. We outline a solution strategy for this setting based on stochastic gradient Hamiltonian Monte Carlo sampling (SGHMC) which we alter to include an elastic coupling term that ties together multipl...
متن کاملA Complete Recipe for Stochastic Gradient MCMC
Many recent Markov chain Monte Carlo (MCMC) samplers leverage continuous dynamics to define a transition kernel that efficiently explores a target distribution. In tandem, a focus has been on devising scalable variants that subsample the data and use stochastic gradients in place of full-data gradients in the dynamic simulations. However, such stochastic gradient MCMC samplers have lagged behin...
متن کاملDistributed Stochastic Gradient MCMC
Probabilistic inference on a big data scale is becoming increasingly relevant to both the machine learning and statistics communities. Here we introduce the first fully distributed MCMC algorithm based on stochastic gradients. We argue that stochastic gradient MCMC algorithms are particularly suited for distributed inference because individual chains can draw mini-batches from their local pool ...
متن کاملModel Accuracy and Runtime Tradeoff in Distributed Deep Learning
Deep learning with a large number of parameters requires distributed training, where model accuracy and runtime are two important factors to be considered. However, there has been no systematic study of the tradeoff between these two factors during the model training process. This paper presents Rudra, a parameter server based distributed computing framework tuned for training large-scale deep ...
متن کاملStochastic Gradient Geodesic MCMC Methods
We propose two stochastic gradient MCMC methods for sampling from Bayesian posterior distributions defined on Riemann manifolds with a known geodesic flow, e.g. hyperspheres. Our methods are the first scalable sampling methods on these manifolds, with the aid of stochastic gradients. Novel dynamics are conceived and 2nd-order integrators are developed. By adopting embedding techniques and the g...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016